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Energy band structures of one-dimensional (HF).- and (H20)n-chains have been calculated (1) 
by extrapolation of CNDO/2-MO levels to infinite chain length and (2) by the CNDO/2 crystal 
orbital (CO) method. In the CO-calculations interactions up to fifth neighbours have been taken 
into account. Both types of calculations were performed using experimental geometries and CNDO/2 
minimum geometries of the corresponding dimers (HF)2 and (H20)2. With the same geometries 
CO calculations on two-dimensional sheets of hydrogen bonded chains were performed too. 

Due to end-effects the extrapolated MO bands are much broader than the bands obtained by the 
CO method. In the CO calculations further neighbour interactions play a non-negligible role and 
hence the nearest neighbour approximation is not sufficient for an accurate description of crystals 
containing hydrogen bonds. 

MO calculations on one-dimensional chains of both systems show that the hydrogen bond energies 
increase with the number of monomers indicating the presence of cooperative effects. The hydrogen 
bond energies calculated with the CO method are usually somewhat larger than those extrapolated 
from the MO results. In three-dimensional networks of (HzO). , however, the additional stabilization 
of clusters with respect to dimers is drastically diminished. 
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1. Introduction 

One of the most  interest ing propert ies  of large s t ructural  uni ts  with hydrogen 
bonds  is the lack of pairwise addit ivi ty of the in termolecular  energy. MO-ca lcu-  
lat ions on aggregates of some water [1, 2] or hydrogen  fluoride [3, 4] molecules 
have shown that  at certain in te rmolecular  geometries the strength of the hydrogen 
b o n d  increases with increasing n u m b e r  of molecules. The format ion of clusters 
can be regarded therefore as a cooperat ive process. On  small aggregates it was 
shown that  ab initio and semi-empirical  M O  calculat ions give the same qual i tat ive 
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Fig. 1. One-dimensional (H20)n-chain 

Table 1. Molecular geometries applied for (H20).  and (HF)n 

Molecule Geometry Ref. No. Bond distances (A) Intermolecular 
angle 

H20  Experimental [10] 1 Ron , = 1.01 109.47 ~ 
ice Roll 2 = 1.02 a 

Roo = 2.72 b 

CNDO/2-  [11] 2 Rom = 1.03 109.47 ~ 
minimum ROll 2 = 1.05 a 
(H20)2 Roo = 2.54 

HF Experimental [ 13] 1 Rnv = 0.92 180 ~ 
HF-crystal RyE = 2.49 

CNDO/2-  [12] 2 RHF= 1.01 180 ~ 
minimum (HF)2 RFF = 2.44 

Experimental [ 13] 3 Rnv = 0.92 120.1 ~ 
HF-crystal Rvv = 2.49 

CNDO/2-  [12] 4 Rnv = 1.01 120.1 ~ 
minimum (HF)2 RFF = 2.44 

a The hydrogen atom involved in the hydrogen bond of (H20)n is.denoted by "H2". 
b Extrapolated to 0 ~ 

results. Infinitely long chains of monomers forming hydrogen bonds have been 
calculated by Bacon and Santry [5, 6]. They have used a perturbation formalism 
to describe the long range interactions in the crystal. 

In this paper the crystal-orbital method originally formulated by Del Re, 
Ladik and Bicz6 [7] was applied in a CNDO/2 version [8] to calculate the energy 
bands of one- and two-dimensional aggregates of water and hydrogen fluoride 
molecules. Direct CNDO/2-MO calculations on chains and clusters with in- 
creasing size were performed as well. Their results are compared with those of 
the crystal orbital calculations. To be able to do this in the crystal orbital calcu- 
lations further neighbours interactions have been taken into account too. 

2. Method of Calculations 

All MO-calculations have been performed using the CNDO/2 approxima- 
tion [9]. One-dimensional chains containing up to 8 H20  molecules, tetrahedral 
clusters of (H:O), up to 5 tetrahedrons and HF chains up to 9 members have 
been calculated. The geometry used for the (H20)n chains is shown in Fig. 1. 
Bond lengths and bond angles were taken from experimental data [10] or from 
CNDO/2 calculations on the water dimer [11] (Table 1). 
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Fig. 2. One-dimensional (HF)n-chain (linear arrangement a, e = 180 ~ and bent arrangement b, a = 120.1 ~ 

Fig. 3. The geometry of the calculated two-dimensional periodic HF clusters, a Cluster with linear 
(HF).-chains; b cluster with bent (HF).-chains. The geometries of the chain were the same as in the 
one-dimensional cases (CNDO/2-minimum and experimental), for the F - F  distance between F-atoms 

belonging to two adjacent chains c a value of 3.10/~ (sum of van der Waals radii) was used 

The two geometric arrangements applied for (HF),-chains are shown in Fig. 2. 
In the case of the linear (HF),-chains again two geometries were used, one with 
the distances at the CNDO/2 minimum of the HF dimer [12] and one with the 
experimental values taken from HF-crystals [13]. In the crystal, however, the 
HF molecules show a bent arrangement (Fig. 2). Therefore calculations were 
performed on both linear and bent (HF), chains using the geometric input data 
summarized in Table 1. 

Crystal orbital calculations on one-dimensional (H2OLo- and (HF)oo-chains 
have been performed with the geometries described above. Additionally two- 
dimensional periodic (HF)oo clusters have been calculated using the geometric 
arrangements of chains shown in Fig. 3. 

The formalism of the CNDO/2 CO method in the first neighbour approxi- 
mation was presented already for one-dimensional [8] and two-dimensional 
periodic systems [14]. In the case of further neighbours interactions we can 
write the equations of the CNDO/2 CO method for a two-dimensional periodic 

system as F ( k l ,  k2) c i ( k  1 , k2) = ei(k 1 , k2) c i ( k  1 , k2) ,  (1) 

N1 N2 
V(ki, k2) = • Z ei(klq'"'+k2q2"2) " e(qi, q2) (2) 

ql = --Nt q2 = -N2 

where k 1 and k 2 represent the two components of the quasi momentum k. Hence, 
the two-dimensional lattice vectors are defined a s / ~ =  qi al ~+ q2a2j" ~and f are 
unit vectors pointing in the two directions of periodicity with elementary transla- 
tions a 1 and a2, respectively. Finally N1 and N2 are the numbers of the neighbours 
taken into account in the two different directions. If we denote the part of the 
matrix Fl(klk2) , which contains the first neighbours interactions [14] by 
F(J)(ki, k2), we can write: 

F1 (kl, k2) = F(~)(kl, k2) +/~(kl, k2) (3) 

where P(ki, k2) can be defined: 
NI+N2 

F(kl, k2) = (4) Z ' ei(klqlal +k2qEa2) . F(ql ' q2)"  

Iqll+b21=2 
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Here ql and q2 can have both signs. The prime after the summation symbol 
indicates that the summation has to be extended for all pairs of ql and q2 which 
sum up to a given value of ([q~[ + [q2[) 1. The elements ofF(qi ,  q2) with [ql] + [q2[ ~ 2 
are calculated according to 

F(qi " ~ _ 4(0) 1 p , ,t21~,,~, - t-'a,, Su,v(ql, q2) - : u,v(qi, q2) YA,B(ql, q2) (5) 

where # belongs to atom A (# e A) and v to atom B (v e B). The overlap integrals 
Su, the generalized bond order Pu~ and the two electron coulomb integrals 7An 
are defined in Eq. (6). 

= ~)G,~ d V  (6a) Su,v(ql,  q2) 5' 1,qz 

l" } 2 ! d k i d k  2 ~ c* . (k t ,k2)c j ,~(k t ,k2)e  i(k~"~+k~q~"~) (6b) Pu'~(ql'q2)= u t j= l  

2 1 
YA,n(ql, q2)= SIz.,A(1)I - - 1 ~ , q 2 ( 2 ) [  2- dVx.  d V  2 (6c) 

/'12 

Z ~ stands for the/ l- th AO in the 6-th reference cell and ~1,q2 for the v-th AO of 
the cell characterized by ql,  q2. u denotes the volume of the first Brillouin zone 
and finally n represents the number of filled bands. The corresponding expres- 
sions for further neighbours interactions in a one dimensional chain can be 
derived from Eq. (3)-(6c) in a straight-forward way. 

For one-dimensional chains the CO calculations have been performed until 
5th neighbours interactions. To give one example: from the 4th neighbours we 
obtain the following contribution to Eq. (6b): 

~/al 
P,,v(4) = dklc j ,u(kOcj ,~(k i ){cos4kia l  + i s i n 4 k l a i } .  (7) 

-- ~/a 1 

Previous calculations with first neighbours interactions have shown that it was 
sufficient to take only 5 different values of k~ in the interval from 0 to rc/a. In this 
case the dependence of the constants c j, u and of the functions cos k~ al and sin k~ a i, 
respectively, on k 1 is approximated well enough by 5 points. In the case of 4th 
neighbours interaction, however, we must take into account more than 5 k-values 
because of numerical reasons. For a reasonable description of the functions 
cos 4k i a ~ and sin 4kl ai evidently more individual points are necessary. Therefore 
we have performed the calculations up to 5 th neighbours using 5, 9, 15 and 25 
different k 1 values for the (H20)~ chain at the CNDO/2 minimum geometry. 
As the detailed results in Table 2 show the energy bands calculated with 9 dif- 
ferent k~ values are practically indistinguishable from those obtained with 25 kx 
values. Hence, we have used always 9 different values of k i in all subsequent 
further neighbours calculations. 

In the case of the two-dimensional periodic clusters the definitions according 
to the usual crystallographic notations of 1 st, 2nd, 3rd, etc. neighbours interactions 
are shown in Fig. 4. 9 different values of k i and 9 different values of k 2 leading 
to 81 different values of pairs kx, k 2 were calculated for these examples. 

In the case of further neighbours interactions we have to modify properly also the diagonal 
elements F(0, 0)... of F(~)(ki, k2) by adding the term 

to the original expression. ~(P~B--ZB)~+~ ?a,8(ql, q2)] 
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Table 2. The dependence on the number of k values of the highest and lowest unfilled energy bands 
of the (H20)oo one-dimensional chain (geometry 2) with 5th neighbours interactions 

Number  of 5 9 15 25 
k values 

Highest" -17.959 -16.953 -16.953 -16.953 
filled - 13.439 -14.597 - 14.597 - 14.597 
band 4.520 2.356 2.356 2.356 

Lowest a 7.046 7.048 7.048 7.048 
unfilled 8.284 8.281 8.281 8.281 
band 1.238 1.233 1.233 1.233 

" The first number gives the lower limit of the band, the second one the upper limit and the third one 
the band width. All values in eV. 

5 4 3 4 5  

4 2 1 2 4  

E 3 1 0 1 3  

4 2 1 2 4  

5 4 3 4 5  

B 

Fig. 4. The definition of the further neighbours interactions in a two-dimensional periodic cluster. 
The numbers written into the cells denote which neighbours interactions with respect to the reference 

cell (cell with 0) they represent 

Table 3. Energy bands of one dimensional (H20)n-chains extrapolated from C N D O / 2 - M O  calculations a 

Number of Type of Geom. 1 Geom. 2 

band band /~rnax emi n A e em,x 8mi . A S 
(in eV) (in eV) 

1 a 10.07 10.56 
3.09 4.85 

2 a - -  6.98 - -  5.71 
3 7z --16.09 - -  - 14.29 - -  

3.75 5.98 
4 cr - -  - 19.86 - -  - 20.27 
5 cr -20.71 --22.18 1.47 --20.41 -23.35 2.94 
6 a --37.01 -42.09 5.08 --35.29 -43.45 8.16 

The largest (H20),-chain calculated contained 8 H 2 0  molecules. 

3. Results 

In Table 3 the energy bands of one-dimensional (HzO)n-chains extrapolated 
from the energy levels of the series H/O, ( H 2 0 ) 2 ,  ( H 2 0 ) 3  u p  t o  (H20)8 are pres- 
ented. Table 4 contains the extrapolated energy bands of linear (HF)n-chains. In 
Table 5 the energies for hydrogen bonds in the one-dimensional (HzO),- and 
(HF)n-chains are shown as functions of the number of monomers. Two geometries 
were applied for (HF), and one for (H/O),. Table 6 shows the extrapolated hydro- 
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Table 4. Energy bands of one dimensional (HF)n-chains extrapolated from CNDO/2-MO calculations ~ 

Number 
of band 

Type Geom. 1 Geom. 2 Geom. 3 Geom. 4 

of band ema x emi n A ~ ema x eml . A S Smax ~min A 8 ~max 8rain A S 
(in eV) (in eV) (in eV) (in eV) 

1 

2 
3 
4 
5 

11.102 6.408 5.694 
19.809 -22.884 3.075 

-19.809 -22.884 3.075 
- 19.047 -27.101 8.054 
-42.638 -48.706 6.068 

10.530 3.809 6.721 
- 16.870 -23.395 6.525 
- 18.530 -23.395 4.865 
- 18.530 -27.400 8.870 
-40.815 -48.788 7.973 

10.381 6.775 3.606 
-19.153 -21.727 2.574 

19.667 -23.039 3.372 
-22.401 -26.230 3.829 
-42.665 -49.185 6.520 

9.758 4.272 4.486 
- 17.197 -21.373 4.176 
- 18.446 -23.714 5.268 
-21.988 -26.660 4.672 
-40.831 -49.177 8.346 

a The largest (HF) n chain contained 9 HF molecules. 

Table 5. Hydrogen bond energies of  (HF).-  and (H20). -chains  

Geometry  Number  of A E - - -a  A E n_ 1 ~n b 
Monomers :  n (kcal/mole) (kcal/mole) 

(HF)n C N D O / 2 - m i n i m u m  
linear (3) 

(HF)n C N D O / 2 - m i n i m u m  
bent (4) 

2 9.50 9.50 
3 10.88 12.25 
4 11.62 13.12 
5 12.O8 13.45 
6 12.38 13.60 
7 12.60 13.68 
8 12.76 13.72 
9 12.89 13.75 

2 9.59 9.59 
3 11.06 12.53 
4 11.86 13.46 
5 12.35 13.82 
6 12.68 13.99 
7 12.91 14.08 
8 13.09 14.13 
9 13.22 14.16 

(HzO).  C N D O / 2 - m i n i m u m  
(2) 2 8.68 8.68 

3 9.63 10.59 
4 10.12 11.11 
5 10.43 11.34 
6 10.61 11.44 
7 10.78 11.50 
8 10.89 11.54 

a The definition of A-"E is given in Eq. (8). s The definition of A E n_ 1 ~n is given in Eq. (9). 

g e n  b o n d  e n e r g i e s  f o r  a l l  t h e  g e o m e t r i e s  o f  o n e - d i m e n s i o n a l  c h a i n s  a n d  f o r  t e t r a -  

h e d r a l  c l u s t e r s  t o g e t h e r  w i t h  t h e  r e s u l t s  o f  C N D O / 2  c r y s t a l  o r b i t a l  c a l c u l a t i o n s .  

I n  T a b l e  7 t h e  e n e r g y  b a n d s  c a l c u l a t e d  b y  t h e  C N D O / 2  C O  m e t h o d  a r e  g i v e n  

f o r  o n e - d i m e n s i o n a l  ( H z O ) o ~ - c h a i n s  C N D O / 2 - m i n i m u m  g e o m e t r y  a n d  e x p e r i -  

m e n t a l  g e o m e t r y .  T a b l e  8 c o n t a i n s  t h e  e n e r g y  b a n d s  s t r u c t u r e s  f o r  o n e - d i m e n s i o n a l  

( H F ) o ~ - c h a i n s  w i t h  t h e  f o u r  g e o m e t r i e s  p r e v i o u s l y  d e s c r i b e d .  
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Table  6. The hydrogen  bond  energies  for one -d imens iona l  (HF)n- and  (HzO) , -cha ins  and  for t e t r ahedra l  
wa te r  c lus ters  ca lcu la ted  by  M O -  and  C O - m e t h o d s  

Aggregates  Geom.  A E A E n_ 1 ~n ~H.B. 

No.  (kcal /mole)  1.n.i. a 5.n.i. 
(kcal /mole)  

(HF)n cha ins  1 - 8.29(9) ~ 
2 - 12.89(9) 
3 - 7.93(9) 
4 - 13.22(9) 

( H 2 0 ) , - c h a i n s  1 - 6.57(8) 
2 - 10.89(8) 

( H 2 0 ) ,  - 9.15(2) b 
Te t r ahed ra l  c lusters  - 9.30(4) 
C N D O / 2  min.  geom. - 9.30(5) 

- 8.41(9) - 7.47 c - 8.32 

- 13.75(9) - 12.72 - 13.66 
- 8.41(9) - 8.79 - 9.35 
- 1 4 . 1 6 ( 9 )  - 1 5 . 0 6  - 1 5 . 9 5  

- 6.71(8) - 7.37 - 7.58 
- 1 1 . 5 4 ( 8 )  - 1 4 . 7 7  - 1 5 . 2 7  

a In parentheses  the n u m b e r  of m o n o m e r s  used for the d e t e r m i n a t i o n  of the hyd rogen  bond  energies 
is shown. 

b The n u m b e r  of t e t r ahed rons  is g iven in parentheses .  An oxygen-oxygen  d is tance  of 2.51 A gave the 
energy m i n i m u m .  

c Ca lcu la t ed  by  the crys ta l  o rb i t a l  m e t h o d  as the difference of the to ta l  energy per  uni t  cell and  tha t  
of the single molecule .  
"z.n.i." means ,  t ha t  in te rac t ions  up  to the z th ne ighbour s  have  been t aken  into account .  

Tab le  7. Ene rgy  bands  of ( H 2 0 ) ~  cha ins  ca lcu la ted  by C O - m e t h o d  at  9 different values of  k a 

N u m b e r  Energy  b a n d s  (eV) 

of band  G e o m e t r y  No.  1 G e o m e t r y  No.  2 

1.n.i. b 3.n.i. b 5.n.i. b 1.n.i. b 3.n.i. b 5.n.i. b 

1 9.287(~) 9.289(~) 9.294(~) 9.105(0) 9.131(3~/8) 9.132(3~z/8) 
9.243(0) 9.256(0) 9.257(0) 9.066(~) 9.032(~) 9.04202) 
0.044 0.033 0.037 0.039 0.099 0.090 

2 8.496(~) 8.477(~) 8.476(~) 8.330(~) 8.284(~) 8.281 (~z) 
7.555(0) 7.546(0) 7.550(0) 7.055(0) 7.048(0) 7.048(0) 
0.941 0.931 0.926 1.275 1.236 1.233 

3 - 16.149(0) - 16.128(0) - 16.130(0) - 14.622(0) - 14.602(0) - 14.597(0) 
- 17.422(7r) - 17.422(~z) - 17.424(~) - 1 6 . 9 2 6 ( r  0 - 16.946(~) - 16.95302 ) 

1.273 1.294 1.294 2.304 2.344 2.356 
4 - 18.406(0) - 18.400(0) - 18.401(0) - 18.256(0) - 18.261(0) - 18.265(0) 

- 19.554(~) -19.556(~r)  - 19.558(~) - 19.188(~) - 1 9 . 2 1 0 ( r  0 - 19.215(~z) 
1.148 1.156 1.157 0.932 0.949 0.950 

5 -21 .267 (0 )  - 2 1 . 2 5 1 ( 0 )  -21 .251 (0 )  -21 .167 (0 )  -21 .157(0 )  -21 .159(0 )  
-21.800(~r) - 2 1 . 7 4 3 ( ~ )  - 2 1 . 7 4 0 ( ~ )  - 2 2 . 7 6 7 ( ~ )  -22 .654(~)  -22 .648 (~ )  

0.533 0.492 0.490 1.600 1.496 1.489 
6 - 37.055(~) - 37.089(n) - 37.089(~) - 35.492(~) - 35.568(n) -35 .571 (~ )  

-41 .843(0 )  41.888(0) -41 .887 (0 )  -42 .927(0 )  - 4 3 . 0 5 t ( 0 )  -43 .048(0 )  
4.788 4.799 4.798 7.435 7.483 7.477 

a The  first n u m b e r  gives the upper  limit,  the second one the lower  l imi t  of the energy band.  The  th i rd  
n u m b e r  represents  the b a n d  width.  The  n u m b e r s  in pa ran theses  are  the k-values  of the band  limits. 

b "z.n.i." means  tha t  in te rac t ions  up to the z t~ ne ighbour s  have  been t aken  into account .  
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Table 8. Energy bands of (HF)| chains calculated by CO-method at 9 different values of k a 

Number  Energy bands (eV) 

of band Geometry No. 1 Geometry No. 3 

1.n.i. a 3.n.i. 5.n.i. 1.n.i. 3.n.i. 5.n.i. 

1 10.686(70 10.6890r ) 10.694(~) 9.540(~) 9,496(70 9.498 (g) 
6.914(0) 6.965(0) 6.957(0) 7.737(0) 7.727(0) 7.729(0) 
3.772 3.724 3.737 1.803 1.770 1.769 

2 - 19.284(0) - 19.334(0) - 19.327(0) - 19.565(0) - 19.588(0) - 19.600(0) 
- 21.252(38/8) - 21.266(3zc/8) - 21.276(37r/8) - 21.077(~) - 21.119(z) - 21.130(r 0 

1.986 1.932 1.949 1.513 1.531 1.530 

3 -21 .15000  -21.164(n)  -21.174(g)  -21.3220r  ) -21.357(70 -21.368(70 
-21,297(0) -21.312(0)  -21.322(0) -21.469(0) -21.504(0) -21.514(0) 

0.148 0.148 0.148 0,147 0.147 0.147 

4 -21.276(~z/4) -21.290(7r/4) -21.300(~z/4) -22.894(0) -22.917(0) -22,925(0) 
- 26.918 (re) - 26.921 (70 - 26.923 (70 - 25.842(70 - 25.826 (n) - 25,832(g) 

5.642 5.630 5.623 2.948 2.909 2.907 

5 -42.947(~r) -42.974(70 -42.970(70 -43.039(~) -43.097(n)  -43.107(g)  
- 48.311 (0) - 48.334(0) - 48.331 (0) - 48.771 (0) - 48.841 (0) - 48.849(0) 

5.363' 5.361 5.361 5.732 5.744 5,742 

Number  Geometry No. 2 Geometry No. 4 

of band 1.n.J. 3.n.i. 5.n.i. 1 .n.i. 3.n.J. 5.n.i. 

1 9.857(70 9.859(z) 9,863(70 8.358(n) 8.293(n) 8.298(~z) 
4.777(0) 4.843(0) 4.853(0) 6.023(0) 6.036(0) 6.035(0) 
5.080 5.015 5.011 2.334 2.257 2.263 

2 - 17.239(0) - 17.294(0) - 17.306(0) - 18.161(0) - 18.202(0) - 18.210(0) 
- 20.849 (~/2) - 20.867 (z/2) - 20,878 (re/2) - 20.348 (n) - 20.40002) - 20.419 (~z) 

3.609 3.573 3.572 2.187 2.199 2.209 

3 -20.7590r)  -20.7770r)  -20.79502) -20,967(n)  -21.00902) -21,022(~) 
-20.938(0) -20.956(0)  -20.975(0) -21.147(0) -21.188(0) -21.202(0) 

0.180 0.180 0.180 0.180 0.180 0.180 

4 -20.883(37r/8) -20.901(37r/8) -20.912(3~/8) -22.457(0) -22.489(0) -22.501(0) 
-27.073(~) -27.068(r  0 -27.073(zc) -25 .95800  -25.972(z) -25.932(70 

6.190 6.167 6.160 3.501 3.439 3.431 

5 -41.483(72) -41.49902) -41.519(n)  -41.679(7r) -41.742(70 -41,756(~) 
-47.807(0) -47.828(0)  -47.843(0) -48.340(0) -48.431(0) -48.441(0) 

6.324 6.329 6.323 6.661 6,689 6.685 

a see Table 7. 

I n  T a b l e  9 t h e  b a n d  s t r u c t u r e s  o b t a i n e d  f o r  t h e  t w o - d i m e n s i o n a l  H F  c l u s t e r s  
w i t h  t h e  m e n t i o n e d  f o u r  g e o m e t r i e s  a r e  p r e s e n t e d  a n d  f i n a l l y  T a b l e  10 c o n t a i n s  

a c o m p a r i s o n  o f  t h e  f o r b i d d e n  b a n d  w i d t h s .  

4 .  D i s c u s s i o n  

Hydrogen Bond Energies 

T h e  n o n a d d i t i v i t y  o f  h y d r o g e n  b o n d  e n e r g i e s  in  c l u s t e r s  is d e m o n s t r a t e d  

c l e a r l y  i n  T a b l e  5. W e  see  t h a t  t h e  e n e r g y  o f  i n t e r a c t i o n  i n c r e a s e s  c o n s i d e r a b l y  

w i t h  t h e  n u m b e r  o f  m o n o m e r s .  T h e  s a m e  r e s u l t  w a s  o b t a i n e d  b y  v e r y  a c c u r a t e  
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Table 9. Energy bands of two-dimensional (HF)~-aggregates  calculated by CO method at 9 different values for 

k 1 and k2 a 

N u m b e r  Geomet ry  No. l Geomet ry  No. 3 

of band 1.n.i. 3.n.i. 6.n.i. l.n.i. 3.n.J. 6.n.i. 

i 10.835(n/n) 10.764(n/2; n/2) 10.744(7r/2; n/2) 9.849(n/n) 9.704(~/~) 9.869(n/n) 
6.683(0/0) 6.687(0/0) 6.649(0/0) 7.429(0/0) 7.442(0/0) 7.591(0/0) 
4.152 4.086 4.095 2.420 2.262 2.278 

2 - 19.152(0/n) - 17.499(0/0) - 19.215(0/0) - 19.477(0/0) - 17,788(0/0) - 17.666(0/0) 
-21.211(3n/8;3n/8)  -29 .111(n /4 ;n /4)  -27 .104(n /4 ;n /4)  -21.191(~z/n) -27.108(n/2;Tr/2) -26.953(Tr/2;n/2) 

2.059 l l .612 7.889 1.714 9.310 9.287 

3 -21.111(n;n/2) - 19.405 (n/2; 0) -21.137(72/2; 0) - 21.309 (n/n) - 19.525(n/n) - 18.386 (n/n) 
- 21.288(3=; 4/n) - 29.116 (n/4; n/4) - 27.108 (n/4; n/4) -21.469(0/0)  - 27.786(n/2; n/2) - 27.646(n/2; n/2) 

0.177 9.711 5.971 0.160 8.260 9.287 

4 - 21.240(n/4; 3Jz/8) -19.553(0/0)  -21.270(0/0)  -22.632(0/0)  -20.586(0/0)  - 20A44(0/0) 
-26.980(n/0)  -30.873(72/4;n/4) -29.870(~z/4;72/4) -25 .922(n/n)  -30 .668(5n/8;~/2)  -30.547(5~/8;n/2)  

5.740 11.320 8.600 3.291 10.082 10.103 

5 -42.740(n/n)  -41 .127(n /2 ;n /2)  -42.853(rc/2;n/2) -42 .790(n/n)  -41 .442(3n/8 ;n /2)  -41 .299(3n/8;n /2)  
-48.554(0/0)  - 53.826(n/4; n/4) - 51.831 (7r/4; n/4) -49.154(0/0)  - 52.753(~fiz) - 52.618 (n/n) 

5.814 12.699 8.978 6.364 11.31l 11.319 

N u m b e r  Geomet ry  No. 2 Geomet ry  No. 4 

of  band l.n.i. 3.n.J. 6.n.i. 1.n.L 3.n.J. 6.n,i. 

1 l 0.015 (n/n) 9.898 (~z/n) 9.913 (n/Tr) 8.719 (n/n) 
4.407 (0/0) 4.496 (0/0) 4.519 (0/0) 5.628 (0/0) 
5.608 5.402 5.394 3.091 

2 - 16.991 (0/n) - 17.170(0/0) - 17.186(0/0) - 17.948(0/0) 
- 20.813(n/2; 5~/8) 26.767 (n/2; ~/2) - 26.761 (n/2; n/2) 20.465 (n/n) 

3.822 9.597 9.574 2.517 

3 - 20.726(n; n/2) - 20.764(~; n/2) - 20.757(n; n/2) - 20.950(~/n) 
- 20.905(0; n/2) - 26.772(n/2; /2) - 26.766(~/2; ~/2) -21.143(0/0)  

0.179 6.008 6.008 0.193 

4 - 20.853(3n/8; 3n/8) 20.895(37r/8; 0) -20.888(3n/8;  0) - 22.215(n/~) 
- 27.l 70 (n/0) - 29.612 (3~/4; n/2) - 29.687 (37r/4; n/2) - 26.029 (0/0) 

6.317 8.717 8.798 3.814 

5 -- 41.329 (n/Tr) - 41.445(n/n) - 41.427(n/n) --41.481(n/n) 
-48.047(0/0)  -51 .650(3n/8 ;n /2)  -51.664(3n/8;n/2) -48.735(0/0)  

6.718 10.205 10.237 7.254 

8.597(n/~) 
5.752(0/0) 
2.845 

- 16.339(0/0) 
- 26.227 (n/2; ~/2) 

9.888 

- 19.168(n/n) 
- 27.475 (n/2; ~/2) 

8.307 

- 20.201 ( 0 / 0 )  

- 30.402(5n/8; n/2) 
10.201 

- 40.049 (n/n) 
- 52.160(3n/8; re/2) 

12,111 

8.647 (n/n) 
5.792(0/0) 
2.855 

- 16.336(0/0) 
- 26.172 (n/2; 7r/2) 

9.836 

- 19.146(n/n) 
- 27.452(n/2; n/2) 

8.307 

- 20.175 (0/0) 
- 30.430 (5n/8 ; n/2) 

10.255 

- 40.020 (n/n) 
- 52.155 (3n/8 ; n/2) 

12.135 

a see Table 7. 

T a b l e  10. W i d t h s  o f  t he  f o r b i d d e n  b a n d  b e t w e e n  t he  v a l e n c e  a n d  c o n d u c t i o n  b a n d s  

G e o m .  N o .  C N D O / 2  M O  (eV) C N D O / 2  C O  (eV) 

1.n.J. a 5.n.i. 

( H F ) ~  1 26.217 26.166 26.284 

2 20.679 22.016 22.159 

3 25.928 27.302 27.329 

4 21.469 24.184 24.245 

( H 2 0 ) ~  1 23 .070 23.704 23,680 

2 20 .000  21.677 21.645 

a "z .n . i ."  m e a n s ,  t h a t  i n t e r a c t i o n s  up  to t he  z th n e i g h b o u r s  h a v e  b e e n  t a k e n  

in to  a c c o u n t .  
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ab initio calculations [2], which of course were restricted to the first few members 
of the series. Hence we can conclude that there are cooperative effects in the 
formation of long (HF), o r  ( H z O ) n  chains. The increased hydrogen bond energy 
is brought about by charge transfer along the chain, which leads to an increase 
of both the basicity of the lone pair and the acidity of the proton involved in 
the hydrogen bond. 

The next interesting question was to find out the number of neighbours, 
which gave a significant contribution to the increase in bond energy mentioned 
above. The average hydrogen bond energy A E Eq. (8) is not an appropriate 
quantity for that 

A---E(n) = E[ (HX) j  - n .  E(HX) ," (8) 
m 

m: number of hydrogen bonds, n: number of monomers; for one dimensional 
chains: m = n - 1 

purpose, because the relative weight for the chain ends is different in chains of 
different length. This is also the reason for the slow convergence of this quantity 
with increasing length of the chain (Table 5). More suitable for our purpose how- 
ever, is the energy of the "last" hydrogen bond, which describes the insertion 
of a monomer in an already existing chain (AE,_ a-.,) 

A E,  _ 1 -~. = E [(HX),] - {E [(HX), _ a] + E(HX)} (9) 

Table 5 shows that in both cases (HF)n and (H:O),  chains this quantity converges 
much faster than A---E. The last pronounced increase in hydrogen bond energy 
is found for the fifth neighbour. In the case of infinite chains, of course, A E and 
A E,_I_,, have to become identical. 

In Table 6 the hydrogen bond energies for chains of water molecules are 
compared with the values obtained for three-dimensional tetrahedral arrange- 
ments. The additional stabilization of the clusters is reduced drastically. Only a 
small amount of extra hydrogen bond energy of the oligomers compared with the 
dimer remains. This result can be explained easiliy. In tetrahedral arrangements 
of water molecules (Fig. 5) we do not find exclusively the favourable sequential 
arrangement of water molecules in a chain (A), 

0 H .. . . . .  0 H ... . . .  0 H 
/ / / 

H H H 

A 

but also structural units, where one water molecule uses both hydrogens or both 
lone pairs from hydrogen bonds (B, C). 

0 
/ \  

H H 
/ /  

H20" ""'OHa 
B 

H H 
\ /  

O 
, \ / 

H H 
/ \ 

HO OH 
C 
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H~o/H 

l H 
H i 

.... oy 
H \ 

H..~ d H 

Fig. 5. Tetrahedral  ar rangement  of water molecules 

These structures, however, show even lower stabilization energies than twice 
the hydrogen bond energy of the dimer. The same result has been obtained by 
an ab initio calculation too [-2] and can be interpreted in terms of decrease B of 
acidity of the protons or basicity of the lone pairs C by charge transfer to the 
central water molecule. In the three-dimensional network of tetrahedrons all 
three types of structural units occur. Hence, increase and decrease of hydrogen 
bond energy compensate each other and finally only a small residual effect remains. 

One purpose of this paper is to compare MO and CO methods in their appli- 
cation to large hydrogen bonded clusters. There are two main approximations 
in the CO treatment which might cause some errors in the results. The Born- 
v. Karman periodic boundary condition can be interpreted most easily as the 
assumption of an infinite and cyclic crystal neglecting any kind of surface effects. 
In the one-dimensional case we represent our crystal by an infinite closed 
(cyclic) chain, in the two-dimensional case by the surface of an infinite sphere. 
The second approximation concerns the fact, that in an actual CO-calculation 
only a small number of neighbours can be taken into account explicitly. The 
MO-calculations on the other hand are limited to oligomers or clusters with a 
fairly small number of molecules. In this case it remains uncertain if the results are 
effected by the end-effects of fairly small chains or not. 

In general there is good agreement between hydrogen bond energies extra- 
polated from MO results and calculated by the CO method (Table 6). In the most 
cases the CO results indicate somewhat stronger hydrogen bonds with the only 
exceptions of the two linear (HF)~ chains (geometries 1 and 2). It is suggested 
that the difference between MO and CO results seems to depend on the geometries 
of the monomeric units and the intermolecular arrangement chosen. The geo- 
metries calculated in this paper do not provide enough material to give an ex- 
planation of this dependence. 

Band  structures 

Table 3 shows that the bands of the (H20),-chains extrapolated from MO 
calculations are rather broad. The valence band resulting from a ~z-level overlaps 
with the o--band below it. We find also an overlapping of the two unfilled o--bands, 
1 and 2 in Table 3. Furthermore, we can recognize that the band structure depends 
rather strongly on the geometry of the periodic unit. 

In the case of the (HF),-chains we find broad bands too (Table 4). Again the 
three highest filled bands - two re- and one a-band, lying in the same energy 
reg ion-  overlap strongly. In contrary to the (H20).-chains , however, it was 
possible here to determine the limits of the individual bands by symmetry argu- 
ments applied to the eigenvectors. As we have noticed already in the case of 
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(H20), the detailed band structures and sometimes also the degeneracy of the 
bands is strongly depending on the geometries applied. 

The CO-calculations on (H20)~ and (HF)~ show, that the numerical results 
for the bands depend less strongly on the number of neighbours taken into account 
than the hydrogen bond energies. Again we find, that in most cases there is a 
bigger change between 1st and up to 3rd neighbours calculations, than between 
the calculations including 3rd and 5th neighbours. In almost all cases the positions 
and widths of the bands differ strongly for all four geometries used. 

It is further interesting to point out that, though we have only interactions 
through hydrogen bonds in our chains, the widths of the bands are rather large. 
For (HzO)~ we obtain 0.9 eV for the conduction band and 1.2 eV for the valence 
band in the case of the experimental geometry 1. In the (HF)~ chain we find 
even broader bands: 1.8 eV for the conduction and 1.5 eV for the valence band 
in the experimental geometry 3. 

All these results confirm the well known fact that the CNDO/2 method is 
only reliable for a qualitative discussion of relative energies and band structures, 
since the CNDO/2 geometries calculated by energy minimization differ appreci- 
ably from the experimental values. Especially the XH-bonds (X = F, O) are 
obtained much too long in CNDO/2 calculations. 

Comparing the band structures of the chains (H20)~ and (HF)~ calculated 
by the CNDO/2-CO method with the extrapolated MO results on oligomers, we 
fred that the energy centers of the bands do not differ very much. The extrapolated 
MO-band widths, however, are much larger than the corresponding CO-results. 
This difference most probably is caused by the fact, that the periodicity of the 
lattice is disturbed too much by effects resulting from the ends. The one electron 
states seem to be very sensitive to the lack of infinite chain length. Surface states 
are combined with the states inside the chain leading to broader bands. 

The results obtained from two-dimensional periodic HF-aggregates (Table 9) 
show that the band structures are again quite sensitive to the geometries used. 
They depend more strongly on the number of neighbours taken into account 
than the band structures of the one-dimensional chains. This effect is most pro- 
nounced if we proceed from first neighbour interactions to interactions up to 
3rd neighbours. 

The forbidden ranges between conduction and valence bands are very large - 
20 to 30 eV, cf. Table t0 - for all kinds of chains independently of the method 
applied. This result agrees with the well known insulator properties of these 
systems. 

Acknowledgements. We should like to express our gratitude to Professor G. L. Hofaeker for his 
interest in the problem and for his hospitality extended to two of us (A. K. and J. L.). We are indebted 
to the Interfakult~res Reehenzentrum der Universit~t Wien and to the Leibniz Rechenzentrum der 
Bayerisehen Akademie der Wissenschaften for providing free computing time. 

References 

1. DelBene, J., Pople, J.A.: J. Chem. Phys. 52, 4858 (1970) 
2. Hankins, D., Moskowitz, J. W., S tillinger, F. H.: Chem. Phys. Letters 4, 527 (1970). - J. Chem. Phys. 

53, 4544 (1970) 
3. Kollman, P.A., Allen, L.C.: J. Am. Chem. Soe. 92, 753 (1970) 
4. DelBene, J., Pople, J.A.: J. Chem. Phys. 55, 2296 (1971) 



X. LCAO-MO Studies on Molecular Structure 127 

5. Bacon, L, Santry, D.P.: J. Chem. Phys. 55, 3743 (1971) 
6. Bacon, J., Santry, D. P.: J. Chem. Phys. 56, 2011 ( 1972) 
7. DelRe, G., Ladik, J., Biczb, G.: Phys. Rev. 155, 997 (1967) 
8. Ladik, J., Bicz6,G,: Acta Chim. Hung. 67, 397 (1971) 
9a. Pople, J.A., Santry, D. P., Segal, G.A.: J. Chem. Phys. 43, S 129, S 136 (1965) 

b. Pople, J.A., Segal, G.A.: J. Chem. Phys. 44, 3289 (1966) 
c. Pople,J.A., Beveridge, D.L.: Approximate molecular orbital theory. New York: McGraw Hill 

1970 
10. Eisenberg, D., Kauzman, W.: The structure and properties of water, p. 74. Oxford: Clarendon 

Press 1969 
11. Schuster, P.: Theoret. Chim. Acta (Berl.) 19, 212 (1970) 
12. MurreU, J.N., Harget, A.J.: Semiempirical SCF MO theory of molecules, p. 89. London: Wiley- 

Interscience 1972 
13. Atoji, M., Lipscomb, W.N.: Acta Cryst. 7, 173 (1954) 
14. Suhai, S., Ladik, J. : Theoret. Chim. Aeta (Berl.) 28, 27 (1972) 
15. Ladik, J., Rai, D.K., Appel, K.: J. Mol. Spectry. 27, 79 (1968) 

Prof. Dr. P. Schuster 
Institut •r Theoretische Chemie 
Universit~it Wien 
Wgthringer StraBe 17 
A- 1090 Wien, Austria 


